Total No. of Questions : 8] [Total No. of Printed Pages : 3 Roll No **IT-6004-CBGS B.E. VI Semester** Examination, June 2020 **Choice Based Grading System (CBGS) Compiler Design** Time: Three Hours Maximum Marks: 70 Attempt any five questions. *Note*: i) ii) All questions carry equal marks. 1. a) Write down the output of each phase for the expression position: = initial + rate*60. b) Define cross compilation and explain the process of 7 bootstrapping. 2. a) Explain the role of lexical analyzer and write in detail about input buffering. 7 b) Consider the following grammar: S 0A|1B|0|1, A 0S|1B|1, B 0A|1S construct leftmost derivations and parse trees for the following sentences 0101 i) ii) 1100101

IT-6004-CBGS PTO

3.	a)	Obtain the predictive parsing table for the following	_
		grammar:	7
		$S \rightarrow iEtSS \mid a;$	
		$S' \rightarrow eS \mid \epsilon;$	
		$E \rightarrow b$	
	b)	Construct LL (1) parsing table for the following gran	mmar:
		$S \rightarrow iCtS \mid iCtSeS \mid a;$	
		$C \rightarrow b$	
		Is the grammar is LL (1)?	7
4.	a)	What is FIRST and FOLLOW? Write the algorithm	for
		FIRST and FOLLOW.	7
	b)	Consider the grammar	
		$E \rightarrow TE^{1}$	
		$E^1 \rightarrow + E/\epsilon$	
		$T \rightarrow FT'$	
		$T^1 \rightarrow T/\epsilon$	
		$F \rightarrow PF^{\dagger}$	
		$F^1 \rightarrow CP / \epsilon$	
		$P_{\epsilon}(E)/a/b/\epsilon$	
	3	Compute FIRST and FOLLOW.	7
5.	a)	Give the syntax-directed definition for if-else statem	ent.7
	b)	How Back patching can be used the generate code for	or
	4	Boolean expression and flow of control statements.	7
6.	a)	Explain in detail the translation of assignment	
		statements.	7
	b)	Discuss about the run time storage management.	7
			1
IT-6004-CBCS Contd			1

- 7. a) What is a three address code? Mention its types. How would you implement the three address statements? Explain with examples.
 - b) Explain DAG representation of the basic blocks with an example.
- Explain the principle sources of code optimization in 8. a) detail.

anninatalian Kolin Kolin

IT-6004-CBGS